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Abstract
We consider the self-action problem in classical electrodynamics. A strict
geometrical sense of commonly used renormalization of mass is made. A
regularization procedure is proposed which relies on energy–momentum and
angular momentum balance equations. We correct the expression for angular
momentum tensor obtained by us in a previous paper (2002 J. Phys. A: Math.
Gen. 35 831).

PACS numbers: 41.20.Bt, 03.50.De

1. Introduction

In classical electrodynamics particles interact with one another through the medium of a field.
The problem then becomes one of mutual determination: the field is determined by the charged
particles and their motion, and the motion of the charges is determined by the field.

The principle of least action is formulated for a composite system of point-like charged
particles and their electromagnetic field. It is invariant under ten infinitesimal transformations
which constitute the Poincaré group. According to Noether’s theorem, these symmetry
properties can be used for the derivation of conservation laws, i.e. those quantities that do
not change with time.

Variation on field variables gives the Maxwell equations. Liénard–Wiechert fields are the
solutions of Maxwell equations with point-like sources. These ‘fields’ do not have degrees
of freedom of their own: they are functionals of particle paths. One can substitute these
direct particle fields [1] in the conservation laws to rewrite them in terms of particle variables.
Conserved quantities place stringent requirements on the dynamics of our system. Dirac’s
derivation [2] of the radiation-reaction force is based upon consideration of energy–momentum
conservation.

Since Maxwell energy–momentum tensor density has a singularity on a particle world
line, the verification of energy–momentum conservation is not a trivial matter. The main
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point is a covariant splitting of the electromagnetic field’s stress–energy tensor into two parts
separately conserved off the world line of the particle [3]. Volume integration of the radiative
part over a spacelike three-surface � gives the integral of the Larmor relativistic rate over
particle’s world line. The amount of radiated energy–momentum in � depends on all previous
evolution of a source. While the volume integration of the bound part results the expression
which depends on the 4-velocity and 4-acceleration of the source at the observation instant
only (see [3, eq. (3.20)]). The bound part of electromagnetic-field momentum is permanently
‘attached’ to the charge and is carried along with it.

In this paper we provide a self-contained derivation of the Lorentz–Dirac equation which
relies on ten conserved quantities corresponding to Poincaré invariance of a closed particles
plus field system. The first attempt was made recently [4]. For the ‘centre-of-mass’ conserved
quantity which arises from the invariance of the system under Lorentz transformations the
non-covariant expression is obtained. It contradicts the Lorentz–Dirac equation. In this
paper we show that the troubles are caused by the lack of splitting of the angular momentum
tensor density into the bound and the radiative components. López and Villarroel [5] find the
correct equation of angular momentum balance which is consistent with the Lorentz–Dirac
equation. The authors decompose the angular momentum tensor density into the bound and
the radiative parts separately conserved off the world line of the particle. The bound and
emitted angular momenta possess similar properties to the corresponding energy–momentum
quantities. Having used the López and Villarroel decomposition we correct the previous result
[4] which contradicts the Lorentz–Dirac equation.

2. Preliminaries

We choose metric tensor ηµν = diag(−1, 1, 1, 1) for Minkowski space M4. We use the
Heaviside–Lorentz system of units with the velocity of light c = 1. Summation over repeated
indices is understood throughout the paper; Greek indices run from 0 to 3, and Latin indices
from 1 to 3.

We suppose that the components of momentum 4-vector carried by electromagnetic field
of a point-like charge are [6]

pν
em(τ ) = P

∫
σ (τ)

dσµ T µν (2.1)

where dσµ is the vectorial surface element on a hyperplane σ(τ) = {y ∈ M4 : uµ(τ)(yµ −
zµ(τ )) = 0} which intersects a world line

ζ : R → M4 s �→ (zα(s)) (2.2)

at the point (zα(τ )) ∈ ζ . The angular momentum tensor of the electromagnetic field is written
as [6]

Mµν
em (τ ) = P

∫
σ (τ)

dσα (yµT αν − yνT αµ). (2.3)

The components T µν of electromagnetic field’s stress–energy tensor have a singularity on a
particle trajectory. In equations (2.1) and (2.3) capital letter P denotes the principal value of
the singular integral, defined by removing from σ(τ) an ε-sphere around the particle and then
passing to the limit ε → 0.

The usage of an integration hyperplane σ(τ) = {y ∈ M4 : uµ(τ)(yµ − zµ(τ )) = 0}
which is orthogonal to the 4-velocity of the charge at the point zµ(τ ) is very important
for the manipulation of the divergent self-energy of a point charge which was called a
‘renormalization of mass’. The divergent term is due to volume integration of the bound
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part of the electromagnetic field’s stress–energy tensor [3] (the bound part of the angular
momentum tensor density [5]). The regularization procedure involves the Taylor expansion of
the bound integral in powers of ε in which the first two terms lead to the diverging Coulomb
self-energy and the Abraham radiation reaction 4-vector, respectively. One usually adds self-
energy term to the ‘matter’ mass of the particle and proclaims the finite structure-independent
terms as those of true physical meaning. The finite terms depend on the form of the hole that
is cut out from the integration hypersurface to ensure regularization. The best suited hole must
be coordinate free. It is evident that the spacelike hyperplane σ(τ) together with the future
light cone cutting out the hole [6, Fig. 5-2], [3, Fig. 1], [5, Fig. 1] is coordinate free.

We make a Lorentz transformation such that a tilted hyperplane σ(τ) becomes �t ′ = {y ∈
M4 : y0′ = t ′}. The Lorentz matrix, 	(τ), determines the transformation to the particle’s
momentarily co-moving Lorentz frame (MCLF) where the particle is momentarily at rest at
observation instant τ . On rearrangement, energy–momentum (2.1) and angular momentum
(2.3) take the form

pν
em(τ ) = 	ν

ν′(τ )P

∫
�t ′

dσ0′ T 0′ν′
(2.4)

Mµν
em (τ ) = 	µ

µ′(τ )	ν
ν′(τ )P

∫
�t ′

dσ0′ (yµ′
T 0′ν′ − yν′

T 0′µ′
). (2.5)

3. Energy–momentum of the retarded Liénard–Wiechert field

We see that the volume integration over hyperplane �t = {y ∈ M4 : y0 = t} is
intimately connected with the integration over coordinate-free hyperplane σ(τ) = {y ∈
M4 : uµ(τ)(yµ − zµ(τ )) = 0}. In [4] the amount of electromagnetic-field momentum of
the retarded Liénard–Wiechert field in hyperplane �t at fixed instant t is calculated. Volume
integration of the radiative part over �t gives the integral of the Larmor relativistic rate over
particle’s world line [4, eqs. (2.20)]. The volume integration of the bound part results the
expressions which depend on the state of the particle’s motion in the vicinity of the instant of
observation (see [4, eqs. (2.21), (2.22)]):

p0
bnd = 2

3
e2 lim

u→t

(
−1

4
+

1

1 − v2(u)

)
1

t − u
pi

bnd = 2

3
e2 lim

u→t

vi (u)

1 − v2(u)

1

t − u
. (3.1)

To provide the regularization we expand these (divergent) expressions in powers of
ε = t − u and neglect all positive powers of this small parameter:

P 0
bnd = 2

3
e2 lim

ε→0

(
−1

4
+

1

1 − v2(t)

)
1

ε
− 4

3
e2a0(t)

(3.2)

P i
bnd = 2

3
e2 lim

ε→0

vi (t)

1 − v2(t)

1

ε
− 2

3
e2[ai(t) + vi (t)a0(t)].

Here

a0(t) = (vv̇)

(1 − v2(t))2
ai(t) = v̇i (t)

1 − v2(t)
+

(vv̇)vi(t)

(1 − v2(t))2
(3.3)

are the components of particle’s 4-acceleration in the ‘laboratory’ frame.
The choice of coordinate-dependent hole in �t around the particle results the expressions

with non-covariant structureless terms. What should be done about? Taking vi(t) = 0 we
arrive at

P 0′
bnd = e2

2ε
P i′

bnd = −2

3
e2ai′ (3.4)
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where the components ai′ = 	i′
αaα constitute 3-vector a which is (non-trivial) spatial part of

the particle acceleration taken in MCLF. After that we perform the Lorentz transformation:

p
µ

bnd = 	µ
µ′P

µ′
bnd = e2

2ε
uµ − 2

3
e2aµ. (3.5)

Having done these manipulations we substitute the coordinate-free hole which is cut out in
Lorentz-invariant hyperplane σ(τ) for the coordinate-dependent hole in the non-covariant
hyperplane �t (cf equations (2.1) and (2.4)).

As usual, the divergent quantity e2/2ε is linked together with the mechanical ‘matter’
mass of a particle, so that renormalized mass m is considered to be finite. After that we obtain
Teitelboim’s expression [3] for the 4-momentum p

µ
part = p

µ

mech + p
µ

bnd of accelerated point-like
charge:

p
µ
part = muµ − 2

3e2aµ. (3.6)

4. Angular momentum of the retarded Liénard–Wiechert field

We now turn to the calculation of the angular momentum tensor

Mµν
em = P

∫
�t

dσ0 (yµT 0ν − yνT 0µ) (4.1)

which is rewritten in the form of (2.5). We apply the convenient coordinate system [4, eq.
(2.10)] where an integration hyperplane �t becomes a surface of constant value. The retarded
distance r [7] is replaced by the right-hand side of [4, eq. (2.9)] in new curvilinear coordinates.
It is proportional to the difference t − u of the observation time t and the retarded time u.

Following [5], we present the integrand as a sum of the radiative and the bound parts:

M
µ0ν

rad = zµ(u)T 0ν
rad − zν(u)T

0µ

rad + (yµ − zµ(u))T 0ν
(−3) − (yν − zν(u))T

0µ

(−3) (4.2)

M
µ0ν

bnd = zµ(u)T 0ν
bnd − zν(u)T

0µ

bnd + (yµ − zµ(u))T 0ν
(−4) − (yν − zν(u))T

0µ

(−4) (4.3)

where T
0µ

(−3) and T
0µ

(−4) denote the parts of T
0µ

bnd which are scaled as r−3 and r−4, respectively.
The components T 0µ of energy–momentum tensor density in terms of new coordinates are
written in [4, eqs. (2.15), (2.16)].

The integration reveals that the decomposition is meaningful. Indeed, the contribution of
radiative angular momentum density is regular:

M
ij

rad = 2

3
e2

∫ t

−∞
du a2(u)[zi(u)vj (u) − zj (u)vi(u)]

+
2

3
e2

∫ t

−∞
du[vi(u)aj (u) − vj (u)ai(u)] (4.4)

M0i
rad = 2

3
e2

∫ t

−∞
du a2(u)[uvi(u) − zi(u)] +

2

3
e2

∫ t

−∞
du[ai(u) − vi(u)a0(u)]. (4.5)

The amount of emitted angular momentum in hyperplane �t at fixed observation instant t
depends on all previous motion of a source. The radiation part detaches itself from the charge
and leads an independent existence, while the bound part of the angular momentum depends
on the state of the source in the vicinity of the instant of observation:

M
ij

bnd = 2

3
e2 lim

u→t

[
zi(u)

vj (u)

1 − v2(u)

1

t − u
− zj (u)

vi(u)

1 − v2(u)

1

t − u

]
(4.6)
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M0i
bnd = 2

3
e2 lim

u→t

[
u

vi(u)

1 − v2(u)

1

t − u
− zi(u)

(
−1

4
+

1

1 − v2(u)

)
1

t − u

]
. (4.7)

The expression for mixed spacetime components M0i
em = M0i

bnd + M0i
rad of angular

momentum, obtained in [4, eq. (3.3)], is different from the sum of expressions (4.5) and (4.7)
of the present paper. So far as radiative terms are concerned, the difference is the integral
being a function of the end points only:

2

3
e2

∫ t

−∞
du

[
v̇i(u)

1 − v2(u)
+ 2

(vv̇)vi(u)

(1 − v2(u))2

]
= 2

3
e2

∫ t

−∞
du

d

du

[
vi(u)

1 − v2(u)

]
. (4.8)

It compensates the difference of the bound parts:

2

3
e2

[
lim
u→t

u
vi (u)

1 − v2(u)

1

t − u
− t lim

u→t

vi(u)

1 − v2(u)

1

t − u

]

= 2

3
e2

∫ t

−∞
du

[
d

du

(
u

vi(u)

1 − v2(u)

1

t − u

)
− t

d

du

(
vi(u)

1 − v2(u)

1

t − u

)]

= −2

3
e2

∫ t

−∞
du

d

du

[
vi(u)

1 − v2(u)

]
.

We see that the bound and the radiative terms are mixed up in [4]. As a result the incorrect
expression is obtained in this paper. It was caused by the lack of covariant splitting of angular
momentum tensor density into the bound part and the radiative part [5].

We expand equations (4.6) and (4.7) in powers of ε = t − u. Neglecting all positive
powers of ε, we arrive at the following non-covariant expressions:

M
ij

bnd = zi(t)P
j

bnd − zj (t)P i
bnd

(4.9)
M0i

bnd = tP i
bnd − zi(t)P 0

bnd − 2
3e2 1

4vi(t).

Divergent components P
µ

bnd are given by equations (3.2). To satisfy the explicit Lorentz
invariance we pass to MCLF and then perform the Lorentz transformation 	 (see
equation (2.5)). We obtain the covariant expression

M
µν

bnd = zµ(t)pν
bnd − zν(t)p

µ

bnd (4.10)

where zµ(t) = (t, zi(t)) and the components p
µ

bnd of bound 4-momentum are given by
equation (3.5).

We see that the (divergent) bound angular momentum (4.10) has precisely the same form
as the mechanical angular momentum of a material particle. Therefore, the regularization of
angular momentum can be reduced to the renormalization of mass.

5. Energy–momentum and angular momentum balance equations

Now we study the energy–momentum and angular momentum balance equations. To involve
an external force as well as an external torque in the conservation laws we consider two
sources acting on one another through the medium of the retarded Liénard–Wiechert fields.
An interference of outgoing electromagnetic waves leads to the interaction between the sources
(see [8] where a frontal collision of two point-like charges is examined).

There is no hyperplane which is orthogonal to the world lines of both the particles
at all events. Kosyakov [9] constructs a piecewise hypersurface where a small fragment
of a spacelike hyperplane � is replaced by a fragment of an orthogonal hyperplane
σa(τa) = {

y ∈ M4 : ua,µ(τa)
(
yµ − z

µ
a (τa)

) = 0
}

in the vicinity of every intersection
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point. The deformed hyperplane is called locally adjusted. But the problem arises how to sew
these fragments with �.

The hyperplane �t = {y ∈ M4 : y0 = t} is convenient in this context. The ‘laboratory’
time t is a single common parameter defined along all the world lines of the system. The
volume integration over non-deformed �t of the so-called ‘interference’ part of Maxwell
tensor density [8, eq. (2.6)] resulted in the sum of work done by Lorentz forces of point-like
charges acting on one another. The integration of angular momentum tensor density [6] also
leads to the sensible results [8]. Should �t be deformed?

Expressions (3.1), (4.6) and (4.7) show that the volume integrals of bound parts of
the electromagnetic field’s stress–energy tensor and the angular momentum tensor density
depend on the state of particle’s motion in the vicinity of intersection point ζ ∩ �t . A
charged particle cannot be separated from its bound electromagnetic ‘cloud’ which has its
own 4-momentum and angular momentum. These quantities together with their mechanical
counterparts constitute the 4-momentum and angular momentum of the charged particle. We
proclaim the finite characteristics as those of true physical meaning.

Summing up the self-action terms and the interaction terms, we arrive at the following
total energy–momentum,

P 0 =
2∑

a=1

[
p0

a,part(t) +
2

3
e2
a

∫ t

−∞
dta a2

a(ta)

]
−

∑
b �=a

∫ t

−∞
dta

√
1 − v2

a(ta)F
0
ba (5.1)

P i =
2∑

a=1

[
pi

a,part(t) +
2

3
e2
a

∫ t

−∞
dta a2

a(ta)v
i
a(ta)

]
−

∑
b �=a

∫ t

−∞
dta

√
1 − v2

a(ta)F
i
ba (5.2)

and total angular momentum

Mij =
2∑

a=1

{
zi
a(t)p

j
a,part − zj

a(t)p
i
a,part +

2

3
e2
a

∫ t

−∞
dta a2(ta)

[
zi
a(ta)v

j
a (ta) − zj

a(ta)v
i
a(ta)

]

+
2

3
e2
a

∫ t

−∞
dta

[
vi

a(ta)a
j
a (ta) − vj

a (ta)a
i
a(ta)

]}

−
∑
b �=a

∫ t

−∞
dta

√
1 − v2

a(ta)
[
zi
a(ta)F

j

ba − zj
a(ta)F

i
ba

]
(5.3)

M0i =
2∑

a=1

{
tpi

a,part − zi
a(t)p

0
a,part +

2

3
e2
a

∫ t

−∞
dta a2(ta)

[
tav

i
a(ta) − zi

a(ta)
]

+
2

3
e2
a

∫ t

−∞
dta

[
ai

a(ta) − vi
a(ta)a

0
a(ta)

]}

−
∑
b �=a

∫ t

−∞
dta

√
1 − v2

a(ta)
[
taF

i
ba − zi

a(ta)F
0
ba

]
(5.4)

where F
µ

ba denotes µth component of the Lorentz force due to charge b on charge a.
The change in energy–momentum and angular momentum carried by the electromagnetic

field should be balanced by a corresponding change of particles’ 4-momenta and angular
momenta, respectively. Since the action is not propagated instantaneously, the balance in
a vicinity of the first charge as well as in a neighbourhood of the second charge should be
achieved separately. The analysis of (5.1) and (5.2) gives the relativistic generalization of
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Newton’s second law

ṗ0
a,part = − 2

3e2
aa2

a(t) +
√

1 − v2
a(t)F

0
ba

(5.5)
ṗi

a,part = − 2
3e2

aa2
a(t)v

i
a(t) +

√
1 − v2

a(t)F
i
ba

where loss of energy due to radiation is taken into account. Via the differentiation of (5.3),
(5.4) and taking into account the relativistic generalization of Newton’s second law we arrive
at the equalities which do not contain the Lorentz forces at all:

vi
a(t)p

j
a,part − vj

a (t)p
i
a,part = − 2

3e2
a

[
vi

a(t)a
j
a (t) − vj

a (t)a
i
a(t)

]
(5.6)

p
j
a,part − vi

a(t)p
0
a,part = − 2

3e2
a

[
ai

a(t) − vi
a(t)a

0
a(t)

]
.

It is convenient to rewrite these kinematic expressions in a manifestly covariant fashion:

uµ
a (τ )pν

a,part − uν
a(τ )p

µ
a,part = − 2

3e2
a

[
uµ

a (τ )aν
a(τ ) − uν

a(τ )aµ
a (τ )

]
. (5.7)

The system of six linear equations in four variables p
µ
a,part is equivalent to

pν
a,part + uν

a(τ )(ua,µp
µ
a,part) = − 2

3e2
aa

ν
a (τ ). (5.8)

The easiest way to solve this system is the usage of MCLF where uν′
a = (1, 0, 0, 0) and

aν′
a = (

0, ai′
a

)
. In MCLF pν′

a,part = (
ma,−2

/
3e2

aa
i′
a

)
where ma is an arbitrary scalar. It is

natural to interpret ma as a finite rest mass of the charged particle.
In the ‘laboratory’ frame

pν
a,part = 	ν

ν′pν′
a,part = mau

ν
a(τ ) − 2

3e2
aa

ν
a(τ ). (5.9)

Therefore, Teitelboim’s expression (3.6) arises from the total angular balance equations.

6. Conclusions

We construct ten conservation laws arising from the symmetry of a closed system of two point-
like charged particles and their electromagnetic field under the Poincaré group. We conclude
that their time derivatives completely determine the time development of the system. Indeed,
energy–momentum balance equations lead to the relativistic generalization of Newton’s second
law where loss of energy due to radiation is taken into account, while the angular momentum
balance equations are the key to the self-interaction problem. They constitute the system of
six linear equations in four components of particle’s momentum. Its solution is Teitelboim’s
expression (3.6) which contains, apart from the usual velocity term, a contribution from the
acceleration when the particle is charged. Having substituted it for the particle’s 4-momentum
in the relativistic generalization of Newton’s second law we derive the Lorentz–Dirac equation
of motion of a charged particle under the influence of an external force as well as its own
electromagnetic field [2].

Acknowledgment

I wish to express my thanks to Professor B P Kosyakov for helpful discussions and for drawing
paper [5] to my attention.



5156 Yu Yaremko

References

[1] Hoyle F and Narlikar J V 1995 Rev. Mod. Phys. 67 113
[2] Dirac P A M 1938 Proc. R. Soc. A 167 148
[3] Teitelboim C 1970 Phys. Rev. D 1 1572
[4] Yaremko Yu 2002 J. Phys. A: Math. Gen. 35 831
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